

Faculty Member

Timken Foundation Center for Precision Manufacturing

1 | ſ

Contact Information	Sample Research I: FOD of Ceramic Matrix Composites
Gregory N Morscher, PhD Professor Mechanical Engineering Department University of Akron 	 High velocity impact of materials and/or coatings with small (1/16") bearings (steel, Si₃N₄ or WC) to assess effect of impact particle density on SiC-based ceramic matrix composites Solid or molten particle (small) impact at room and elevated temperature via powder ingestion in a burner rig under stress conditions on SiC-based and oxide-based ceramic matrix composites
Research Interests	Sample Research II: Monitoring Damage via Acoustic Emission and Electrical Resistance
 High temperature ceramic matrix composites Characterization Damage Development Microstructure/Property Relationships Extreme environments: subsonic, supersonic and hypersonic up to 2000°C Foreign object damage and particle ingestion Health monitoring techniques Acoustic Emission Electrical Resistance 	 Acoustic emission is a passive technique that tells you when, where and possibly what happened as to the source of damage (in composites, typically transverse cracks, interlaminar cracks, fiber breaks, etc) Electrical resistance, for at least semi-conductive materials such as Si, SiC and/or C containing materials, can also yield similar information and

- Digital Image Correlation

also has the potential to be an inspection technique.

Time (minutes)